
repoze.who Documentation
Release 2.2

Agendaless Consulting

February 01, 2022

Contents

1 Sections 3
1.1 repoze.who Narrative Documentation . 3
1.2 repoze.who Use Cases . 4
1.3 Using repoze.who Middleware . 6
1.4 Using the repoze.who Application Programming Interface (API) 10
1.5 Configuring repoze.who . 15
1.6 About repoze.who Plugins . 20
1.7 Known Plugins for repoze.who . 27

2 Change History 29
2.1 repoze.who Changelog . 29

3 Support and Development 41

4 Indices and tables 43

Python Module Index 45

Index 47

i

ii

repoze.who Documentation, Release 2.2

Author Chris McDonough / Tres Seaver

Version 2.2

Overview

repoze.who is an identification and authentication framework for arbitrary WSGI applications. It can be used as
WSGI middleware, or as an API from within a WSGI application.

repoze.who is inspired by Zope 2’s Pluggable Authentication Service (PAS) (but repoze.who is not dependent
on Zope in any way; it is useful for any WSGI application). It provides no facility for authorization (ensuring
whether a user can or cannot perform the operation implied by the request). This is considered to be the domain of
the WSGI application.

It attempts to reuse implementations from paste.auth for some of its functionality.

Contents 1

repoze.who Documentation, Release 2.2

2 Contents

CHAPTER 1

Sections

1.1 repoze.who Narrative Documentation

1.1.1 Using repoze.who as WSGI Middleware

repoze.who was originally developed for use as authentication middleware in a WSGI pipeline, for use by applica-
tions which only needed to obtain an “authenticated user” to enforce a given security policy.

See Middleware Responsibilities for a description of this use case.

1.1.2 Using repoze.who without WSGI Middleware

Some applications might want to use a configured set of repoze.who plugins to do identification and authentication
for a request, outside the context of using repoze.who middleware. For example, a performance-sensitive appli-
cation might wish to defer the effort of identifying and authenticating a user until the point at which authorization is
required, knowing that some code paths will not need to do the work.

See Using the repoze.who Application Programming Interface (API) for a description of this use case.

1.1.3 Mixing Middleware and API Uses

Some applications might use the repoze.who middleware for most authentication purposes, but need to participate
more directly in the mechanics of identification and authorization for some portions of the application. For example,
consider a system which allows users to sign up online for membership in a site: once the user completes registration,
such an application might wish to log the user in transparently, and thus needs to interact with the configured repoze.
who middleware to generate response headers, ensuring that the user’s next request is properly authenticated.

See Mixed Use of repoze.who Middleware and API for a description of this use case.

3

repoze.who Documentation, Release 2.2

1.1.4 Configuring repoze.who

Developers and integrators can configure repoze.who using either imperative Python code (see Configuring re-
poze.who via Python Code) or using an INI-style declarative configuration file (see Configuring repoze.who via Config
File). In either case, the result of the configuration will be a repoze.who.api:APIFactory instance, complete
with a request classifier, a challenge decider, and a set of plugins for each plugin interface.

1.2 repoze.who Use Cases

How should an application interact with repoze.who? There are three main scenarios:

1.2.1 Middleware-Only Use Cases

Examples of using the repoze.who middleware, without explicitly using its API.

Simple: Bug Tracker with REMOTE_USER

This application expects the REMOTE_USER variable to be set by the middleware for authenticated requests. It allows
the middleware to handle challenging the user when needed.

In protected views, such as those which allow creating or following up to bug reports:

• Check environ['REMOTE_USER'] to get the authenticated user, and apply any application-specific policy
(who is allowed to edit).

– If the access check fails because the user is not yet authenticated, return an 401 Unauthorized response.

– If the access check fails for authenticated users, return a 403 Forbidden response.

Note that the application here doesn’t depend on repoze.who at all: it would work identically if run behind Apache’s
mod_auth. The Trac application works exactly this way.

The middleware can be configured to suit the policy required for the site, e.g.:

• challenge / identify using HTTP basic authentication

• authorize via an .htaccces-style file.

More complex: Wiki with repoze.who.identity

This application use the repoze.who.identity variable set in the WSGI environment by the middleware for
authenticated requests. The application still allows the middleware to handle challenging the user when needed.

The only difference from the previous example is that protected views, such as those which allow adding or editing
wiki pages, can use the extra metadata stored inside environ['repoze.who.identity'] (a mapping) to make
authorization decisions: such metadata might include groups or roles mapped by the middleware onto the user.

1.2.2 API-Only Use Cases

Examples of using the repoze.who API without its middleware.

4 Chapter 1. Sections

repoze.who Documentation, Release 2.2

Simple: Wiki with its own login and logout views.

This application uses the repoze.who API to compute the authenticated user, as well as using its remember API
to set headers for cookie-based authentication.

In each view:

• Call api.authenticate to get the authenticated user.

• Show a login link for non-authenticated requests.

• Show a logout link for authenticated requests.

• Don’t show “protected” links for non-authenticated requests.

In protected views, such as those which allow adding or editing wiki pages:

• Call api.authenticate to get the authenticated user; check the metadata about the user (e.g., any appro-
priate roles or groups) to verify access.

– If the access check fails because the user is not yet authenticated, redirect to the login view, with a
came_from value of the current URL.

– If the access check fails for authenticated users, return a 403 Forbidden response.

In the login view:

• For GET requests, show the login form.

• For POST requests, validate the login and password from the form. If successful, call api.remember, and
append the returned headers to your response, which may also contain, e.g., a Location header for a redirect
to the came_from URL. In this case, there will be no authenticator plugin which knows about the login /
password at all.

In the logout view:

• Call api.forget and append the headers to your response, which may also contain, e.g., a Location header
for a redirect to the came_from URL after logging out.

More complex: multiple applications with “single sign-on”

In this scenario, authentication is “federated” across multiple applications, which delegate to a central “login appli-
cation.” This application verifies credentials from the user, and then uses headers or other tokens to communicate the
verified identity to the delegating application.

In the login application:

• The SSO login application works just like the login view described above: the difference is that the configured
identifier plugins must emit headers from remember which can be recognized by their counterparts in the other
apps.

In the non-login applications:

• Challenge plugins here must be configured to implement the specific SSO protocol, e.g. redirect to the login
app with information in the query string (other protocols might differ).

• Identifer plugins must be able to “crack” / consume whatever tokens are returned by the SSO login app.

• Authenticators will normally be no-ops (e.g., the auth_tkt plugin used as an authenticator).

1.2. repoze.who Use Cases 5

repoze.who Documentation, Release 2.2

1.2.3 Hybrid Use Cases

Examples of using the repoze.who API in conjuntion with its middleware.

Most complex: integrate Trac and the wiki behind SSO

This example extends the previous one, but adds into the mix the requirement that one or more of the non-login
applications (e.g., Trac) be used “off the shelf,” without modifying them. Such applications can be plugged into the
same SSO regime, with the addition of the :mod:repoze.who middleware as an adapter to bridge the gap (e.g., to
turn the SSO tokens into the REMOTE_USER required by Trac).

In this scenario, the middleware would be configured identically to the API used in applications which do not need the
middleware shim.

1.3 Using repoze.who Middleware

1.3.1 Middleware Responsibilities

repoze.who as middleware has one major function on ingress: it conditionally places identification and authentica-
tion information (including a REMOTE_USER value) into the WSGI environment and allows the request to continue
to a downstream WSGI application.

repoze.who as middleware has one major function on egress: it examines the headers set by the downstream
application, the WSGI environment, or headers supplied by other plugins and conditionally challenges for credentials.

1.3.2 Lifecycle of a Request

repoze.who performs duties both on middleware “ingress” and on middleware “egress”. The following graphic
outlines where it sits in the context of the request and its response:

6 Chapter 1. Sections

repoze.who Documentation, Release 2.2

1.3. Using repoze.who Middleware 7

repoze.who Documentation, Release 2.2

Request (Ingress) Stages

8 Chapter 1. Sections

repoze.who Documentation, Release 2.2

repoze.who performs the following operations in the following order during middleware ingress:

1. Environment Setup

The middleware adds a number of keys to the WSGI environment:

repoze.who.plugins A reference to the configured plugin set.

repoze.who.logger A reference to the logger configured into the middleware.

repoze.who.application A refererence to the “right-hand” application. The plugins consulted during
request classification / identification / authentication may replace this application with another WSGI ap-
plication, which will be used for the remainder of the current request.

2. Request Classification

The middleware hands the WSGI environment to the configured classifier plugin, which is responsible for
classifying the request into a single “type”. This plugin must return a single string value classifying the request,
e.g., “browser”, “xml-rpc”, “webdav”, etc.

This classification may serve to filter out plugins consulted later in the request. For instance, a plugin which
issued a challenge as an HTML form would be inappropriate for use in requests from an XML-RPC or WebDAV
client.

3. Identification

Each plugin configured as an identifier for a particular class of request is called to extract identity data (“creden-
tials”) from the WSGI environment.

For example, a basic auth identifier might use the HTTP_AUTHORIZATION header to find login and password
information. Each configured identifier plugin is consulted in turn, and any non-None identities returned are
collected into a list to be authenticated.

Identifiers are also responsible for providing header information used to set and remove authentication informa-
tion in the response during egress (to “remember” or “forget” the currently-authenticated user).

4. Authentication

The middlware consults each plugin configured as an authenticators for a particular class of request, to compare
credentials extracted by the identification plugins to a given policy, or set of valid credentials.

For example, an htpasswd authenticator might look in a file for a user record matching any of the extracted
credentials. If it finds one, and if the password listed in the record matches the password in the identity, the
userid of the user would be returned (which would be the same as the login name). Successfully-authenticated
identities are “weighted”, with the highest weight identity governing the remainder of the request.

5. Metadata Assignment

After identifying and authenticating a user, repoze.who consults plugins configured as metadata providers,
which may augment the authenticated identity with arbitrary metadata.

For example, a metadata provider plugin might add the user’s first, middle and last names to the identity. A
more specialized metadata provider might augment the identity with a list of role or group names assigned to
the user.

Response (Egress) Stages

repoze.who performs the following operations in the following order during middleware egress:

1. Challenge Decision

1.3. Using repoze.who Middleware 9

repoze.who Documentation, Release 2.2

The middleare examines the WSGI environment and the status and headers returned by the downstream appli-
cation to determine whether a challenge is required. Typically, only the status is used: if it starts with 401, a
challenge is required, and the challenge decider returns True.

This behavior can be replaced by configuring a different challenge_decider plugin for the middleware.

If a challenge is required, the challenge decider returns True; otherwise, it returns False.

2. Credentials reset, AKA “forgetting”

If the challenge decider returns True, the middleware first delegates to the identifier plugin which provided the
currently-authenticated identity to “forget” the identity, by adding response headers (e.g., to expire a cookie).

3. Challenge

The plugin then consults each of the plugins configured as challengers for the current request classification: the
first plugin which returns a non-None WSGI application will be used to perform a challenge.

Challenger plugins may use application-returned headers, the WSGI environment, and other items to determine
what sort of operation should be performed to actuate the challenge.

4. Remember

The identifier plugin that the “best” set of credentials came from (if any) will be consulted to “remember” these
credentials if the challenge decider returns False.

1.4 Using the repoze.who Application Programming Interface (API)

1.4.1 Using repoze.who without Middleware

An application which does not use the repoze.who middleware needs to perform two separate tasks to use
repoze.who machinery:

• At application startup, it must create an repoze.who.api:APIFactory instance, populating it with
a request classifier, a challenge decider, and a set of plugins. It can do this process imperatively (see
Configuring repoze.who via Python Code), or using a declarative configuration file (see Configuring re-
poze.who via Config File). For the latter case, there is a convenience function, repoze.who.config.
make_api_factory_with_config():

myapp/run.py
from repoze.who.config import make_api_factory_with_config
who_api_factory = None
def startup(global_conf):

global who_api_factory
who_api_factory = make_api_factory_with_config(global_conf,

'/path/to/who.config')

• When it needs to use the API, it must call the APIFactory, passing the WSGI environment to it. The
APIFactory returns an object implementing the repoze.who.interfaces:IRepozeWhoAPI inter-
face.

myapp/views.py
from myapp.run import who_api_factory
def my_view(context, request):

who_api = who_api_factory(request.environ)

• Calling the APIFactory multiple times within the same request is allowed, and should be very cheap (the API
object is cached in the request environment).

10 Chapter 1. Sections

repoze.who Documentation, Release 2.2

1.4.2 Mixed Use of repoze.who Middleware and API

An application which uses the repoze.who middleware may still need to interact directly with the
IRepozeWhoAPI object for some purposes. In such cases, it should call repoze.who.api:get_api(), pass-
ing the WSGI environment.

from repoze.who.api import get_api
def my_view(context, request):

who_api = get_api(request.environ)

Alternately, the application might configure the APIFactory at startup, as above, and then use it to find the API
object, or create it if it was not already created for the current request (e.g. perhaps by the middleware):

def my_view(context, request):
who_api = context.who_api_factory(request.environ)

1.4.3 Writing a Custom Login View

repoze.who.api.API provides a helper method to assist developers who want to control the details of the login
view. The following BFG example illustrates how this API might be used:

1 def login_view(context, request):
2 message = ''
3

4 who_api = get_api(request.environ)
5 if 'form.login' in request.POST:
6 creds = {}
7 creds['login'] = request.POST['login']
8 creds['password'] = request.POST['password']
9 authenticated, headers = who_api.login(creds)

10 if authenticated:
11 return HTTPFound(location='/', headers=headers)
12

13 message = 'Invalid login.'
14 else:
15 # Forcefully forget any existing credentials.
16 _, headers = who_api.login({})
17

18 request.response_headerlist = headers
19 if 'REMOTE_USER' in request.environ:
20 del request.environ['REMOTE_USER']
21

22 return {'message': message}

This application is written as a “hybrid”: the repoze.who middleware injects the API object into the WSGI env-
iornment on each request.

• In line 4, this application extracts the API object from the environ using repoze.who.api:get_api().

• Lines 6 - 8 fabricate a set of credentials, based on the values the user entered in the form.

• In line 9, the application asks the API to authenticate those credentials, returning an identity and a set of respones
headers.

• Lines 10 and 11 handle the case of successful authentication: in this case, the application redirects to the site
root, setting the headers returned by the API object, which will “remember” the user across requests.

1.4. Using the repoze.who Application Programming Interface (API) 11

repoze.who Documentation, Release 2.2

• Line 13 is reached on failed login. In this case, the headers returned in line 9 will be “forget” headers, clearing
any existing cookies or other tokens.

• Lines 14 - 16 perform a “fake” login, in order to get the “forget” headers.

• Line 18 sets the “forget” headers to clear any authenticated user for subsequent requests.

• Lines 19 - 20 clear any authenticated user for the current request.

• Line 22 returns any message about a failed login to the rendering template.

1.4.4 Interfaces

interface repoze.who.interfaces.IAPIFactory

__call__(environ)
environ -> IRepozeWhoAPI

interface repoze.who.interfaces.IAPI
Facade for stateful invocation of underlying plugins.

authenticate()
-> {identity}

o Return an authenticated identity mapping, extracted from the request environment.

o If no identity can be authenticated, return None.

o Identity will include at least a ‘repoze.who.userid’ key, as well as any keys added by metadata plugins.

challenge(status=’403 Forbidden’, app_headers=())
-> wsgi application

o Return a WSGI application which represents a “challenge” (request for credentials) in response to the
current request.

remember(identity=None)
-> [headers]

O Return a sequence of response headers which suffice to remember the given identity.

o If ‘identity’ is not passed, use the identity in the environment.

forget(identity=None)
-> [headers]

O Return a sequence of response headers which suffice to destroy any credentials used to establish an
identity.

o If ‘identity’ is not passed, use the identity in the environment.

login(credentials, identifier_name=None)
-> (identity, headers)

o This is an API for browser-based application login forms.

o If ‘identifier_name’ is passed, use it to look up the identifier; othewise, use the first configured iden-
tifier.

o Attempt to authenticate ‘credentials’ as though the identifier had extracted them.

o On success, ‘identity’ will be authenticated mapping, and ‘headers’ will be “remember” headers.

o On failure, ‘identity’ will be None, and response_headers will be “forget” headers.

12 Chapter 1. Sections

repoze.who Documentation, Release 2.2

logout(identifier_name=None)
-> (headers)

o This is an API for browser-based application logout.

o If ‘identifier_name’ is passed, use it to look up the identifier; othewise, use the first configured iden-
tifier.

o Returned headers will be “forget” headers.

interface repoze.who.interfaces.IPlugin

interface repoze.who.interfaces.IRequestClassifier
Extends: repoze.who.interfaces.IPlugin

On ingress: classify a request.

__call__(environ)
environ -> request classifier string

This interface is responsible for returning a string value representing a request classification.

o ‘environ’ is the WSGI environment.

interface repoze.who.interfaces.IChallengeDecider
Extends: repoze.who.interfaces.IPlugin

On egress: decide whether a challenge needs to be presented to the user.

__call__(environ, status, headers)
args -> True | False

o ‘environ’ is the WSGI environment.

o ‘status’ is the HTTP status as returned by the downstream WSGI application.

o ‘headers’ are the headers returned by the downstream WSGI application.

This interface is responsible for returning True if a challenge needs to be presented to the user, False
otherwise.

interface repoze.who.interfaces.IIdentifier
Extends: repoze.who.interfaces.IPlugin

On ingress: Extract credentials from the WSGI environment and turn them into an identity.

On egress (remember): Conditionally set information in the response headers allowing the remote system to
remember this identity.

On egress (forget): Conditionally set information in the response headers allowing the remote system to forget
this identity (during a challenge).

identify(environ)
On ingress:

environ -> { k1 [v1] , . . . , kN : vN } | None

o ‘environ’ is the WSGI environment.

o If credentials are found, the returned identity mapping will contain an arbitrary set of key/value
pairs. If the identity is based on a login and password, the environment is recommended to contain
at least ‘login’ and ‘password’ keys as this provides compatibility between the plugin and existing
authenticator plugins. If the identity can be ‘preauthenticated’ (e.g. if the userid is embedded in the
identity, such as when we’re using ticket-based authentication), the plugin should set the userid in the
special ‘repoze.who.userid’ key; no authenticators will be asked to authenticate the identity thereafer.

1.4. Using the repoze.who Application Programming Interface (API) 13

repoze.who Documentation, Release 2.2

o Return None to indicate that the plugin found no appropriate credentials.

o Only IIdentifier plugins which match one of the the current request’s classifications will be asked to
perform identification.

o An identifier plugin is permitted to add a key to the environment named ‘repoze.who.application’,
which should be an arbitrary WSGI application. If an identifier plugin does so, this application is
used instead of the downstream application set up within the middleware. This feature is useful for
identifier plugins which need to perform redirection to obtain credentials. If two identifier plugins add
a ‘repoze.who.application’ WSGI application to the environment, the last one consulted will”win”.

remember(environ, identity)
On egress (no challenge required):

args -> [(header-name, header-value), . . .] | None

Return a list of headers suitable for allowing the requesting system to remember the identification informa-
tion (e.g. a Set-Cookie header). Return None if no headers need to be set. These headers will be appended
to any headers returned by the downstream application.

forget(environ, identity)
On egress (challenge required):

args -> [(header-name, header-value), . . .] | None

Return a list of headers suitable for allowing the requesting system to forget the identification information
(e.g. a Set-Cookie header with an expires date in the past). Return None if no headers need to be set.
These headers will be included in the response provided by the challenge app.

interface repoze.who.interfaces.IAuthenticator
Extends: repoze.who.interfaces.IPlugin

On ingress: validate the identity and return a user id or None.

authenticate(environ, identity)
identity -> ‘userid’ | None

o ‘environ’ is the WSGI environment.

o ‘identity’ will be a dictionary (with arbitrary keys and values).

o The IAuthenticator should return a single user id (optimally a string) if the identity can be authenti-
cated. If the identify cannot be authenticated, the IAuthenticator should return None.

Each instance of a registered IAuthenticator plugin that matches the request classifier will be called N
times during a single request, where N is the number of identities found by any IIdentifierPlugin instances.

An authenticator must not raise an exception if it is provided an identity dictionary that it does not under-
stand (e.g. if it presumes that ‘login’ and ‘password’ are keys in the dictionary, it should check for the
existence of these keys before attempting to do anything; if they don’t exist, it should return None).

An authenticator is permitted to add extra keys to the ‘identity’ dictionary (e.g., to save metadata from a
database query, rather than requiring a separate query from an IMetadataProvider plugin).

interface repoze.who.interfaces.IChallenger
Extends: repoze.who.interfaces.IPlugin

On egress: Conditionally initiate a challenge to the user to provide credentials.

Only challenge plugins which match one of the the current response’s classifications will be asked to perform a
challenge.

challenge(environ, status, app_headers, forget_headers)
args -> WSGI application or None

14 Chapter 1. Sections

repoze.who Documentation, Release 2.2

o ‘environ’ is the WSGI environment.

o ‘status’ is the status written into start_response by the downstream application.

o ‘app_headers’ is the headers list written into start_response by the downstream application.

o ‘forget_headers’ is a list of headers which must be passed back in the response in order to perform
credentials reset (logout). These come from the ‘forget’ method of IIdentifier plugin used to do the
request’s identification.

Examine the values passed in and return a WSGI application (a callable which accepts environ and
start_response as its two positional arguments, ala PEP 333) which causes a challenge to be performed.
Return None to forego performing a challenge.

interface repoze.who.interfaces.IMetadataProvider
Extends: repoze.who.interfaces.IPlugin

On ingress: When an identity is authenticated, metadata providers may scribble on the identity dictionary arbi-
trarily. Return values from metadata providers are ignored.

add_metadata(environ, identity)
Add metadata to the identity (which is a dictionary). One value is always guaranteed to be in the dictionary
when add_metadata is called: ‘repoze.who.userid’, representing the user id of the identity. Availability and
composition of other keys will depend on the identifier plugin which created the identity.

1.5 Configuring repoze.who

1.5.1 Configuration Points

Classifiers

repoze.who “classifies” the request on middleware ingress. Request classification happens before identification and
authentication. A request from a browser might be classified a different way than a request from an XML-RPC client.
repoze.who uses request classifiers to decide which other components to consult during subsequent identification,
authentication, and challenge steps. Plugins are free to advertise themselves as willing to participate in identification
and authorization for a request based on this classification. The request classification system is pluggable. repoze.
who provides a default classifier that you may use.

You may extend the classification system by making repoze.who aware of a different request classifier implemen-
tation.

Challenge Deciders

repoze.who uses a “challenge decider” to decide whether the response returned from a downstream application
requires a challenge plugin to fire. When using the default challenge decider, only the status is used (if it starts with
401, a challenge is required).

repoze.who also provides an alternate challenge decider, repoze.who.classifiers.
passthrough_challenge_decider, which avoids challenging 401 responses which have been “pre-
challenged” by the application.

You may supply a different challenge decider as necessary.

1.5. Configuring repoze.who 15

repoze.who Documentation, Release 2.2

Plugins

repoze.who has core functionality designed around the concept of plugins. Plugins are instances that are willing to
perform one or more identification- and/or authentication-related duties. Each plugin can be configured arbitrarily.

repoze.who consults the set of configured plugins when it intercepts a WSGI request, and gives some subset of
them a chance to influence what repoze.who does for the current request.

Note: As of repoze.who 1.0.7, the repoze.who.plugins package is a namespace package, intended to make
it possible for people to ship eggs which are who plugins as, e.g. repoze.who.plugins.mycoolplugin.

1.5.2 Configuring repoze.who via Python Code

class repoze.who.middleware.PluggableAuthenticationMiddleware(app, identifiers,
challengers,
authenticators,
mdproviders,
classifier, chal-
lenge_decider[,
log_stream=None[,
log_level=logging.INFO[,
re-
mote_user_key=’REMOTE_USER’
]]])

The primary method of configuring the repoze.who middleware is to use straight Python code, meant to be
consumed by frameworks which construct and compose middleware pipelines without using a configuration file.

In the middleware constructor: app is the “next” application in the WSGI pipeline. identifiers is a sequence of
IIdentifier plugins, challengers is a sequence of IChallenger plugins, mdproviders is a sequence of
IMetadataProvider plugins. Any of these can be specified as the empty sequence. classifier is a request
classifier callable, challenge_decider is a challenge decision callable. log_stream is a stream object (an object
with a writemethod) or a logging.Logger object, log_level is a numeric value that maps to the logging
module’s notion of log levels, remote_user_key is the key in which the REMOTE_USER (userid) value should
be placed in the WSGI environment for consumption by downstream applications.

An example configuration which uses the default plugins follows:

from repoze.who.middleware import PluggableAuthenticationMiddleware
from repoze.who.interfaces import IIdentifier
from repoze.who.interfaces import IChallenger
from repoze.who.plugins.basicauth import BasicAuthPlugin
from repoze.who.plugins.auth_tkt import AuthTktCookiePlugin
from repoze.who.plugins.redirector import RedirectorPlugin
from repoze.who.plugins.htpasswd import HTPasswdPlugin

io = StringIO()
salt = 'aa'
for name, password in [('admin', 'admin'), ('chris', 'chris')]:

io.write('%s:%s\n' % (name, password))
io.seek(0)
def cleartext_check(password, hashed):

return password == hashed
htpasswd = HTPasswdPlugin(io, cleartext_check)
basicauth = BasicAuthPlugin('repoze.who')

(continues on next page)

16 Chapter 1. Sections

repoze.who Documentation, Release 2.2

(continued from previous page)

auth_tkt = AuthTktCookiePlugin('secret', 'auth_tkt', digest_algo="sha512")
redirector = RedirectorPlugin('/login.html')
redirector.classifications = {IChallenger:['browser'],} # only for browser
identifiers = [('auth_tkt', auth_tkt),

('basicauth', basicauth)]
authenticators = [('auth_tkt', auth_tkt),

('htpasswd', htpasswd)]
challengers = [('redirector', redirector),

('basicauth', basicauth)]
mdproviders = []

from repoze.who.classifiers import default_request_classifier
from repoze.who.classifiers import default_challenge_decider
log_stream = None
import os
if os.environ.get('WHO_LOG'):

log_stream = sys.stdout

middleware = PluggableAuthenticationMiddleware(
app,
identifiers,
authenticators,
challengers,
mdproviders,
default_request_classifier,
default_challenge_decider,
log_stream = log_stream,
log_level = logging.DEBUG
)

The above example configures the repoze.who middleware with:

• Two IIdentifier plugins (auth_tkt cookie, and a basic auth plugin). In this setup, when “identification”
needs to be performed, the auth_tkt plugin will be checked first, then the basic auth plugin. The application is
responsible for handling login via a form: this view would use the API (via :method:‘remember‘) to generate
apprpriate response headers.

• Two IAuthenticator plugins: the auth_tkt plugin and an htpasswd plugin. The auth_tkt plugin performs
both IIdentifier and IAuthenticator functions. The htpasswd plugin is configured with two valid
username / password combinations: chris/chris, and admin/admin. When an username and password is found
via any identifier, it will be checked against this authenticator.

• Two IChallenger plugins: the redirector plugin, then the basic auth plugin. The redirector auth will fire if
the request is a browser request, otherwise the basic auth plugin will fire.

The rest of the middleware configuration is for values like logging and the classifier and decider implementations.
These use the “stock” implementations.

Note: The app referred to in the example is the “downstream” WSGI application that who is wrapping.

1.5.3 Configuring repoze.who via Config File

repoze.who may be configured using a ConfigParser-style .INI file. The configuration file has five main types of
sections: plugin sections, a general section, an identifiers section, an authenticators section, and a challengers section.

1.5. Configuring repoze.who 17

repoze.who Documentation, Release 2.2

Each “plugin” section defines a configuration for a particular plugin. The identifiers, authenticators, and challengers
sections refer to these plugins to form a site configuration. The general section is general middleware configuration.

To configure repoze.who in Python, using an .INI file, call the make_middleware_with_config entry point, passing
the right-hand application, the global configuration dictionary, and the path to the config file. The global configura-
tion dictionary is a dictonary passed by PasteDeploy. The only key ‘make_middleware_with_config’ needs is ‘here’
pointing to the config file directory. For debugging people might find it useful to enable logging by adding the log_file
argument, e.g. log_file=”repoze_who.log”

from repoze.who.config import make_middleware_with_config
global_conf = {"here": "."} # if this is not defined elsewhere
who = make_middleware_with_config(app, global_conf, 'who.ini')

repoze.who’s configuration file can be pointed to within a PasteDeploy configuration file

[filter:who]
use = egg:repoze.who#config
config_file = %(here)s/who.ini
log_file = stdout
log_level = debug

Below is an example of a configuration file (what config_file might point at above) that might be used to
configure the repoze.who middleware. A set of plugins are defined, and they are referred to by following non-
plugin sections.

In the below configuration, five plugins are defined. The form, and basicauth plugins are nominated to act as challenger
plugins. The form, cookie, and basicauth plugins are nominated to act as identification plugins. The htpasswd and
sqlusers plugins are nominated to act as authenticator plugins.

[plugin:redirector]
identificaion and challenge
use = repoze.who.plugins.redirector:make_plugin
login_url = /login.html

[plugin:auth_tkt]
identification and authentication
use = repoze.who.plugins.auth_tkt:make_plugin
secret = s33kr1t
cookie_name = oatmeal
secure = False
include_ip = False
digest_algo = sha512

[plugin:basicauth]
identification and challenge
use = repoze.who.plugins.basicauth:make_plugin
realm = 'sample'

[plugin:htpasswd]
authentication
use = repoze.who.plugins.htpasswd:make_plugin
filename = %(here)s/passwd
check_fn = repoze.who.plugins.htpasswd:crypt_check

[plugin:sqlusers]
authentication
use = repoze.who.plugins.sql:make_authenticator_plugin
Note the double %%: we have to escape it from the config parser in

(continues on next page)

18 Chapter 1. Sections

repoze.who Documentation, Release 2.2

(continued from previous page)

order to preserve it as a template for the psycopg2, whose 'paramstyle'
is 'pyformat'.
query = SELECT userid, password FROM users where login = %%(login)s
conn_factory = repoze.who.plugins.sql:make_psycopg_conn_factory
compare_fn = repoze.who.plugins.sql:default_password_compare

[plugin:sqlproperties]
name = properties
use = repoze.who.plugins.sql:make_metadata_plugin
Note the double %%: we have to escape it from the config parser in
order to preserve it as a template for the psycopg2, whose 'paramstyle'
is 'pyformat'.
query = SELECT firstname, lastname FROM users where userid = %%(__userid)s
filter = my.package:filter_propmd
conn_factory = repoze.who.plugins.sql:make_psycopg_conn_factory

[general]
request_classifier = repoze.who.classifiers:default_request_classifier
challenge_decider = repoze.who.classifiers:default_challenge_decider
remote_user_key = REMOTE_USER

[identifiers]
plugin_name;classifier_name:.. or just plugin_name (good for any)
plugins =

auth_tkt
basicauth

[authenticators]
plugin_name;classifier_name.. or just plugin_name (good for any)
plugins =

auth_tkt
htpasswd
sqlusers

[challengers]
plugin_name;classifier_name:.. or just plugin_name (good for any)
plugins =

redirector;browser
basicauth

[mdproviders]
plugins =

sqlproperties

The basicauth section configures a plugin that does identification and challenge for basic auth credentials. The redirec-
tor section configures a plugin that does challenges. The auth_tkt section configures a plugin that does identification
for cookie auth credentials, as well as authenticating them. The htpasswd plugin obtains its user info from a file. The
sqlusers plugin obtains its user info from a Postgres database.

The identifiers section provides an ordered list of plugins that are willing to provide identification capability. These
will be consulted in the defined order. The tokens on each line of the plugins= key are in the form “plu-
gin_name;requestclassifier_name:. . . ” (or just “plugin_name” if the plugin can be consulted regardless of the clas-
sification of the request). The configuration above indicates that the system will look for credentials using the auth_tkt
cookie identifier (unconditionally), then the basic auth plugin (unconditionally).

The authenticators section provides an ordered list of plugins that provide authenticator capability. These will be
consulted in the defined order, so the system will look for users in the file, then in the sql database when attempting to

1.5. Configuring repoze.who 19

repoze.who Documentation, Release 2.2

validate credentials. No classification prefixes are given to restrict which of the two plugins are used, so both plugins
are consulted regardless of the classification of the request. Each authenticator is called with each set of identities
found by the identifier plugins. The first identity that can be authenticated is used to set REMOTE_USER.

The mdproviders section provides an ordered list of plugins that provide metadata provider capability. These will be
consulted in the defined order. Each will have a chance (on ingress) to provide add metadata to the authenticated
identity. Our example mdproviders section shows one plugin configured: “sqlproperties”. The sqlproperties plugin
will add information related to user properties (e.g. first name and last name) to the identity dictionary.

The challengers section provides an ordered list of plugins that provide challenger capability. These will be consulted
in the defined order, so the system will consult the cookie auth plugin first, then the basic auth plugin. Each will have a
chance to initiate a challenge. The above configuration indicates that the redirector challenger will fire if it’s a browser
request, and the basic auth challenger will fire if it’s not (fallback).

1.6 About repoze.who Plugins

1.6.1 Plugin Types

Identifier Plugins

You can register a plugin as willing to act as an “identifier”. An identifier examines the WSGI environment and
attempts to extract credentials from the environment. These credentials are used by authenticator plugins to perform
authentication.

Authenticator Plugins

You may register a plugin as willing to act as an “authenticator”. Authenticator plugins are responsible for resolving a
set of credentials provided by an identifier plugin into a user id. Typically, authenticator plugins will perform a lookup
into a database or some other persistent store, check the provided credentials against the stored data, and return a user
id if the credentials can be validated.

The user id provided by an authenticator is eventually passed to downstream WSGI applications in the “RE-
MOTE_USER’ environment variable. Additionally, the “identity” of the user (as provided by the identifier from
whence the identity came) is passed along to downstream application in the repoze.who.identity environment
variable.

Metadata Provider Plugins

You may register a plugin as willing to act as a “metadata provider” (aka mdprovider). Metadata provider plugins are
responsible for adding arbitrary information to the identity dictionary for consumption by downstream applications.
For instance, a metadata provider plugin may add “group” information to the the identity.

Challenger Plugins

You may register a plugin as willing to act as a “challenger”. Challenger plugins are responsible for initiating a
challenge to the requesting user. Challenger plugins are invoked by repoze.who when it decides a challenge is
necessary. A challenge might consist of displaying a form or presenting the user with a basic or digest authentication
dialog.

20 Chapter 1. Sections

repoze.who Documentation, Release 2.2

1.6.2 Default Plugin Implementations

repoze.who ships with a variety of default plugins that do authentication, identification, challenge and metadata
provision.

class repoze.who.plugins.auth_tkt.AuthTktCookiePlugin(secret[,
cookie_name=’auth_tkt’[,
secure=False[, in-
clude_ip=False]]])

An AuthTktCookiePlugin is an IIdentifier and IAuthenticator plugin which remembers its
identity state in a client-side cookie. This plugin uses the paste.auth.auth_tkt”auth ticket” protocol and
is compatible with Apache’s mod_auth_tkt. It should be instantiated passing a secret, which is used to encrypt
the cookie on the client side and decrypt the cookie on the server side. The cookie name used to store the
cookie value can be specified using the cookie_name parameter. If secure is False, the cookie will be sent across
any HTTP or HTTPS connection; if it is True, the cookie will be sent only across an HTTPS connection. If
include_ip is True, the REMOTE_ADDR of the WSGI environment will be placed in the cookie.

Normally, using the plugin as an identifier requires also using it as an authenticator.

Note: Using the include_ip setting for public-facing applications may cause problems for some users. One study
reports that as many as 3% of users change their IP addresses legitimately during a session.

Note: Plugin supports remembering user data in the cookie by saving user dict into identity['userdata']
parameter of remember method. They are sent unencrypted and protected by checksum. Data will then be re-
turned every time by identify. This dict must be compatible with urllib.urlencode function (urllib.
urlparse.urlencode in python 3). Saving keys/values with unicode characters is supported only under python
3.

Note: Plugin supports multiple digest algorithms. It defaults to md5 to match the default for mod_auth_tkt and
paste.auth.auth_tkt. However md5 is not recommended as there are viable attacks against the hash. Any algorithm
from the hashlib library can be specified, currently only sha256 and sha512 are supported by mod_auth_tkt.

class repoze.who.plugins.basicauth.BasicAuthPlugin(realm)
A BasicAuthPlugin plugin is both an IIdentifier and IChallenger plugin that implements
the Basic Access Authentication scheme described in RFC 2617. It looks for credentials within the
HTTP-Authorization header sent by browsers. It challenges by sending an WWW-Authenticate
header to the browser. The single argument realm indicates the basic auth realm that should be sent in the
WWW-Authenticate header.

class repoze.who.plugins.htpasswd.HTPasswdPlugin(filename, check)
A HTPasswdPlugin is an IAuthenticator implementation which compares identity information against
an Apache-style htpasswd file. The filename argument should be an absolute path to the htpasswd file’ the check
argument is a callable which takes two arguments: “password” and “hashed”, where the “password” argument
is the unencrypted password provided by the identifier plugin, and the hashed value is the value stored in the
htpasswd file. If the hashed value of the password matches the hash, this callable should return True. A default
implementation named crypt_check is available for use as a check function (on UNIX) as repoze.who.
plugins.htpasswd:crypt_check; it assumes the values in the htpasswd file are encrypted with the
UNIX crypt function.

class repoze.who.plugins.redirector.RedirectorPlugin(login_url, came_from_param,
reason_param, rea-
son_header)

1.6. About repoze.who Plugins 21

http://westpoint.ltd.uk/advisories/Paul_Johnston_GSEC.pdf
https://tools.ietf.org/html/rfc2617.html

repoze.who Documentation, Release 2.2

A RedirectorPlugin is an IChallenger plugin. It redirects to a configured login URL at egress if
a challenge is required . login_url is the URL that should be redirected to when a challenge is required.
came_from_param is the name of an optional query string parameter: if configured, the plugin provides the
current request URL in the redirected URL’s query string, using the supplied parameter name. reason_param is
the name of an optional query string parameter: if configured, and the application supplies a header matching
reason_header (defaulting to X-Authorization-Failure-Reason), the plugin includes that reason in
the query string of the redirected URL, using the supplied parameter name. reason_header is an optional pa-
rameter overriding the default response header name (X-Authorization-Failure-Reason) which the
plugin checks to find the application-supplied reason for the challenge. reason_header cannot be set unless
reason_param is also set.

class repoze.who.plugins.sql.SQLAuthenticatorPlugin(query, conn_factory, com-
pare_fn)

A SQLAuthenticatorPlugin is an IAuthenticator implementation which compares login-password
identity information against data in an arbitrary SQL database. The query argument should be a SQL
query that returns two columns in a single row considered to be the user id and the password respec-
tively. The SQL query should contain Python-DBAPI style substitution values for %(login), e.g.
SELECT user_id, password FROM users WHERE login = %(login). The conn_factory ar-
gument should be a callable that returns a DBAPI database connection. The compare_fn argument should be
a callable that accepts two arguments: cleartext and stored_password_hash. It should compare
the hashed version of cleartext and return True if it matches the stored password hash, otherwise it should
return False. A comparison function named default_password_compare exists in the repoze.who.
plugins.sql module demonstrating this. The SQLAuthenticatorPlugin’s authenticate method
will return the user id of the user unchanged to repoze.who.

class repoze.who.plugins.sql.SQLMetadataProviderPlugin(name, query, conn_factory,
filter)

A SQLMetatadaProviderPlugin is an IMetadataProvider implementation which adds arbitrary
metadata to the identity on ingress using data from an arbitrary SQL database. The name argument should
be a string. It will be used as a key in the identity dictionary. The query argument should be a SQL query
that returns arbitrary data from the database in a form that accepts Python-binding style DBAPI arguments. It
should expect that a __userid value will exist in the dictionary that is bound. The SQL query should contain
Python-DBAPI style substitution values for (at least) %(__userid), e.g. SELECT group FROM groups
WHERE user_id = %(__userid). The conn_factory argument should be a callable that returns a DBAPI
database connection. The filter argument should be a callable that accepts the result of the DBAPI fetchall
based on the SQL query. It should massage the data into something that will be set in the environment under the
name key.

1.6.3 Writing repoze.who Plugins

repoze.who can be extended arbitrarily through the creation of plugins. Plugins are of one of four types: identifier
plugins, authenticator plugins, metadata provider plugins, and challenge plugins.

Writing An Identifier Plugin

An identifier plugin (aka an IIdentifier plugin) must do three things: extract credentials from the request and
turn them into an “identity”, “remember” credentials, and “forget” credentials.

Here’s a simple cookie identification plugin that does these three things

class InsecureCookiePlugin(object):

def __init__(self, cookie_name):
self.cookie_name = cookie_name

(continues on next page)

22 Chapter 1. Sections

repoze.who Documentation, Release 2.2

(continued from previous page)

def identify(self, environ):
from paste.request import get_cookies
cookies = get_cookies(environ)
cookie = cookies.get(self.cookie_name)

if cookie is None:
return None

import binascii
try:

auth = cookie.value.decode('base64')
except binascii.Error: # can't decode

return None

try:
login, password = auth.split(':', 1)
return {'login':login, 'password':password}

except ValueError: # not enough values to unpack
return None

def remember(self, environ, identity):
cookie_value = '%(login)s:%(password)s' % identity
cookie_value = cookie_value.encode('base64').rstrip()
from paste.request import get_cookies
cookies = get_cookies(environ)
existing = cookies.get(self.cookie_name)
value = getattr(existing, 'value', None)
if value != cookie_value:

return a Set-Cookie header
set_cookie = '%s=%s; Path=/;' % (self.cookie_name, cookie_value)
return [('Set-Cookie', set_cookie)]

def forget(self, environ, identity):
return a expires Set-Cookie header
expired = ('%s=""; Path=/; Expires=Sun, 10-May-1971 11:59:00 GMT' %

self.cookie_name)
return [('Set-Cookie', expired)]

def __repr__(self):
return '<%s %s>' % (self.__class__.__name__, id(self))

.identify

The identify method of our InsecureCookiePlugin accepts a single argument “environ”. This will be the WSGI
environment dictionary. Our plugin attempts to grub through the cookies sent by the client, trying to find one that
matches our cookie name. If it finds one that matches, it attempts to decode it and turn it into a login and a password,
which it returns as values in a dictionary. This dictionary is thereafter known as an “identity”. If it finds no credentials
in cookies, it returns None (which is not considered an identity).

More generally, the identifymethod of an IIdentifier plugin is called once on WSGI request “ingress”, and it
is expected to grub arbitrarily through the WSGI environment looking for credential information. In our above plugin,
the credential information is expected to be in a cookie but credential information could be in a cookie, a form field,
basic/digest auth information, a header, a WSGI environment variable set by some upstream middleware or whatever
else someone might use to stash authentication information. If the plugin finds credentials in the request, it’s expected

1.6. About repoze.who Plugins 23

repoze.who Documentation, Release 2.2

to return an “identity”: this must be a dictionary. The dictionary is not required to have any particular keys or value
composition, although it’s wise if the identification plugin looks for both a login name and a password information to
return at least {‘login’:login_name, ‘password’:password}, as some authenticator plugins may depend on presence of
the names “login” and “password” (e.g. the htpasswd and sql IAuthenticator plugins). If an IIdentifier
plugin finds no credentials, it is expected to return None.

.remember

If we’ve passed a REMOTE_USER to the WSGI application during ingress (as a result of providing an identity
that could be authenticated), and the downstream application doesn’t kick back with an unauthorized response, on
egress we want the requesting client to “remember” the identity we provided if there’s some way to do that and
if he hasn’t already, in order to ensure he will pass it back to us on subsequent requests without requiring another
login. The remember method of an IIdentifier plugin is called for each non-unauthenticated response. It is
the responsibility of the IIdentifier plugin to conditionally return HTTP headers that will cause the client to
remember the credentials implied by “identity”.

Our InsecureCookiePlugin implements the “remember” method by returning headers which set a cookie if and only if
one is not already set with the same name and value in the WSGI environment. These headers will be tacked on to the
response headers provided by the downstream application during the response.

When you write a remember method, most of the work involved is determining whether or not you need to return
headers. It’s typical to see remember methods that compute an “old state” and a “new state” and compare the two
against each other in order to determine if headers need to be returned. In our example InsecureCookiePlugin, the “old
state” is cookie_value and the “new state” is value.

.forget

Eventually the WSGI application we’re serving will issue a “401 Unauthorized” or another status signifying that
the request could not be authorized. repoze.who intercepts this status and calls IIdentifier plugins
asking them to “forget” the credentials implied by the identity. It is the “forget” method’s job at this point to
return HTTP headers that will effectively clear any credentials on the requesting client implied by the “identity”
argument.

Our InsecureCookiePlugin implements the “forget” method by returning a header which resets the cookie that
was set earlier by the remember method to one that expires in the past (on my birthday, in fact). This header
will be tacked onto the response headers provided by the downstream application.

Writing an Authenticator Plugin

An authenticator plugin (aka an IAuthenticator plugin) must do only one thing (on “ingress”): accept an identity
and check if the identity is “good”. If the identity is good, it should return a “user id”. This user id may or may not
be the same as the “login” provided by the user. An IAuthenticator plugin will be called for each identity
found during the identification phase (there may be multiple identities for a single request, as there may be multiple
IIdentifier plugins active at any given time), so it may be called multiple times in the same request.

Here’s a simple authenticator plugin that attempts to match an identity against ones defined in an “htpasswd” file that
does just that:

class SimpleHTPasswdPlugin(object):

def __init__(self, filename):
self.filename = filename

(continues on next page)

24 Chapter 1. Sections

repoze.who Documentation, Release 2.2

(continued from previous page)

IAuthenticatorPlugin
def authenticate(self, environ, identity):

try:
login = identity['login']
password = identity['password']

except KeyError:
return None

f = open(self.filename, 'r')

for line in f:
try:

username, hashed = line.rstrip().split(':', 1)
except ValueError:

continue
if username == login:

if crypt_check(password, hashed):
return username

return None

def crypt_check(password, hashed):
from crypt import crypt
salt = hashed[:2]
return hashed == crypt(password, salt)

An IAuthenticator plugin implements one “interface” method: “authentictate”. The formal specification for the
arguments and return values expected from these methods are available in the interfaces.py file in repoze.
who as the IAuthenticator interface, but let’s examine this method here less formally.

.authenticate

The authenticate method accepts two arguments: the WSGI environment and an identity. Our SimpleHTPass-
wdPlugin authenticate implementation grabs the login and password out of the identity and attempts to find the
login in the htpasswd file. If it finds it, it compares the crypted version of the password provided by the user to the
crypted version stored in the htpasswd file, and finally, if they match, it returns the login. If they do not match, it
returns None.

Note: Our plugin’s authenticate method does not assume that the keys login or password exist in the
identity; although it requires them to do “real work” it returns None if they are not present instead of raising an
exception. This is required by the IAuthenticator interface specification.

Writing a Challenger Plugin

A challenger plugin (aka an IChallenger plugin) must do only one thing on “egress”: return a WSGI application
which performs a “challenge”. A WSGI application is a callable that accepts an “environ” and a “start_response” as
its parameters; see “PEP 333” for further definition of what a WSGI application is. A challenge asks the user for
credentials.

Here’s an example of a simple challenger plugin:

from paste.httpheaders import WWW_AUTHENTICATE
from paste.httpexceptions import HTTPUnauthorized

(continues on next page)

1.6. About repoze.who Plugins 25

repoze.who Documentation, Release 2.2

(continued from previous page)

class BasicAuthChallengerPlugin(object):

def __init__(self, realm):
self.realm = realm

IChallenger
def challenge(self, environ, status, app_headers, forget_headers):

head = WWW_AUTHENTICATE.tuples('Basic realm="%s"' % self.realm)
if head[0] not in forget_headers:

head = head + forget_headers
return HTTPUnauthorized(headers=head)

Note that the plugin implements a single “interface” method: “challenge”. The formal specification for the argu-
ments and return values expected from this method is available in the “interfaces.py” file in repoze.who as the
IChallenger interface. This method is called when repoze.who determines that the application has returned an
“unauthorized” response (e.g. a 401). Only one challenger will be consulted during “egress” as necessary (the first
one to return a non-None response).

.challenge

The challenge method takes environ (the WSGI environment), ‘status’ (the status as set by the downstream appli-
cation), the “app_headers” (headers returned by the application), and the “forget_headers” (headers returned by all
participating IIdentifier plugins whom were asked to “forget” this user).

Our BasicAuthChallengerPlugin takes advantage of the fact that the HTTPUnauthorized exception imported from
paste.httpexceptions can be used as a WSGI application. It first makes sure that we don’t repeat headers if an identifica-
tion plugin has already set a “WWW-Authenticate” header like ours, then it returns an instance of HTTPUnauthorized,
passing in merged headers. This will cause a basic authentication dialog to be presented to the user.

Writing a Metadata Provider Plugin

A metadata provider plugin (aka an IMetadataProvider plugin) must do only one thing (on “ingress”): “scribble”
on the identity dictionary provided to it when it is called. An IMetadataProvider plugin will be called with the
final “best” identity found during the authentication phase, or not at all if no “best” identity could be authenticated.
Thus, each IMetadataProvider plugin will be called exactly zero or one times during a request.

Here’s a simple metadata provider plugin that provides “property” information from a dictionary:

_DATA = {
'chris': {'first_name':'Chris', 'last_name':'McDonough'} ,
'whit': {'first_name':'Whit', 'last_name':'Morriss'}
}

class SimpleMetadataProvider(object):

def add_metadata(self, environ, identity):
userid = identity.get('repoze.who.userid')
info = _DATA.get(userid)
if info is not None:

identity.update(info)

26 Chapter 1. Sections

repoze.who Documentation, Release 2.2

.add_metadata

Arbitrarily add information to the identity dict based in other data in the environment or identity. Our plugin adds
first_name and last_name values to the identity if the userid matches chris or whit.

1.7 Known Plugins for repoze.who

1.7.1 Plugins shipped with repoze.who

See Default Plugin Implementations.

1.7.2 Deprecated plugins

The repoze.who.deprecatedplugins distribution bundles the following plugin implementations which were
shipped with repoze.who prior to version 2.0a3. These plugins are deprecated, and should only be used while
migrating an existing deployment to replacement versions.

repoze.who.plugins.cookie.InsecureCookiePlugin An IIdentifier plugin which stores identi-
fication information in an insecure form (the base64 value of the username and password separated by a colon)
in a client-side cookie. Please use the AuthTktCookiePlugin instead.

repoze.who.plugins.form.FormPlugin

An IIdentifier and IChallenger plugin, which intercepts form POSTs to gather identification at
ingress and conditionally displays a login form at egress if challenge is required.

Applications should supply their own login form, and use repoze.who.api.API to authenticate and
remember users. To replace the challenger role, please use repoze.who.plugins.redirector.
RedirectorPlugin, configured with the URL of your application’s login form.

repoze.who.plugins.form.RedirectingFormPlugin

An IIdentifier and IChallenger plugin, which intercepts form POSTs to gather identification at
ingress and conditionally redirects a login form at egress if challenge is required.

Applications should supply their own login form, and use repoze.who.api.API to authenticate and
remember users. To replace the challenger role, please use repoze.who.plugins.redirector.
RedirectorPlugin, configured with the URL of your application’s login form.

1.7.3 Third-party Plugins

repoze.who.plugins.zodb.ZODBPlugin This class implements the repoze.who.interfaces.
IAuthenticator and repoze.who.interfaces.IMetadataProvider plugin interfaces using
ZODB database lookups. See http://pypi.python.org/pypi/repoze.whoplugins.zodb/

repoze.who.plugins.ldap.LDAPAuthenticatorPlugin This class implements the repoze.who.
interfaces.IAuthenticator plugin interface using the python-ldap library to query an LDAP
database. See http://code.gustavonarea.net/repoze.who.plugins.ldap/

repoze.who.plugins.ldap.LDAPAttributesPlugin This class implements the repoze.who.
interfaces.IMetadataProvider plugin interface using the python-ldap library to query an LDAP
database. See http://code.gustavonarea.net/repoze.who.plugins.ldap/

1.7. Known Plugins for repoze.who 27

http://pypi.python.org/pypi/repoze.whoplugins.zodb/
http://code.gustavonarea.net/repoze.who.plugins.ldap/
http://code.gustavonarea.net/repoze.who.plugins.ldap/

repoze.who Documentation, Release 2.2

repoze.who.plugins.friendlyform.FriendlyFormPlugin This class implements the repoze.
who.interfaces.IIdentifier and repoze.who.interfaces.IChallenger plugin interfaces.
It is similar to repoze.who.plugins.form.RedirectingFormPlugin, bt with with additional fea-
tures:

• Users are not challenged on logout, unless the referrer URL is a private one (but that’s up to the applica-
tion).

• Developers may define post-login and/or post-logout pages.

• In the login URL, the amount of failed logins is available in the environ. It’s also increased by one on every
login try. This counter will allow developers not using a post-login page to handle logins that fail/succeed.

See http://code.gustavonarea.net/repoze.who-friendlyform/

repoze.who.plugins.openid.identifiers.OpenIdIdentificationPlugin() This class
implements the repoze.who.interfaces.IIdentifier, repoze.who.interfaces.
IAuthenticator, and repoze.who.interfaces.IChallenger plugin interfaces using OpenId.
See http://quantumcore.org/docs/repoze.who.plugins.openid/

repoze.who.plugins.openid.classifiers.openid_challenge_decider() This function pro-
vides the repoze.who.interfaces.IChallengeDecider interface using OpenId. See http://
quantumcore.org/docs/repoze.who.plugins.openid/

repoze.who.plugins.use_beaker.UseBeakerPlugin This packkage provids a repoze.who.
interfaces.IIdentifier plugin using beaker.session cache. See http://pypi.python.org/pypi/
repoze.who-use_beaker/

repoze.who.plugins.cas.main_plugin.CASChallengePlugin This class implements the repoze.
who.interfaces.IIdentifier repoze.who.interfaces.IAuthenticator, and repoze.
who.interfaces.IChallenger plugin interfaces using CAS. See http://pypi.python.org/pypi/repoze.
who.plugins.cas

repoze.who.plugins.cas.challenge_decider.my_challenge_decider This function provides
the repoze.who.interfaces.IChallengeDecider interface using CAS. See http://pypi.python.org/
pypi/repoze.who.plugins.cas/

repoze.who.plugins.recaptcha.captcha.RecaptchaPlugin This class implements the repoze.
who.interfaces.IAuthenticator plugin interface, using the recaptch API. See http://pypi.python.org/
pypi/repoze.who.plugins.recaptcha/

repoze.who.plugins.sa.SQLAlchemyUserChecker User existence checker for repoze.
who.plugins.auth_tkt.AuthTktCookiePlugin, based on the SQLAlchemy ORM. See
http://pypi.python.org/pypi/repoze.who.plugins.sa/

repoze.who.plugins.sa.SQLAlchemyAuthenticatorPlugin This class implements the repoze.
who.interfaces.IAuthenticator plugin interface, using the the SQLAlchemy ORM. See http://pypi.
python.org/pypi/repoze.who.plugins.sa/

repoze.who.plugins.sa.SQLAlchemyUserMDPlugin This class implements the repoze.who.
interfaces.IMetadataProvider plugin interface, using the the SQLAlchemy ORM. See
http://pypi.python.org/pypi/repoze.who.plugins.sa/

repoze.who.plugins.formcookie.CookieRedirectingFormPlugin This class implements the
repoze.who.interfaces.IIdentifier and repoze.who.interfaces.IChallenger plugin
interfaces, similar to repoze.who.plugins.form.RedirectingFormPlugin. The plugin tracks the
came_from URL via a cookie, rather than the query string. See http://pypi.python.org/pypi/repoze.who.
plugins.formcookie/

28 Chapter 1. Sections

http://code.gustavonarea.net/repoze.who-friendlyform/
http://quantumcore.org/docs/repoze.who.plugins.openid/
http://quantumcore.org/docs/repoze.who.plugins.openid/
http://quantumcore.org/docs/repoze.who.plugins.openid/
http://pypi.python.org/pypi/repoze.who-use_beaker/
http://pypi.python.org/pypi/repoze.who-use_beaker/
http://pypi.python.org/pypi/repoze.who.plugins.cas
http://pypi.python.org/pypi/repoze.who.plugins.cas
http://pypi.python.org/pypi/repoze.who.plugins.cas/
http://pypi.python.org/pypi/repoze.who.plugins.cas/
http://pypi.python.org/pypi/repoze.who.plugins.recaptcha/
http://pypi.python.org/pypi/repoze.who.plugins.recaptcha/
http://pypi.python.org/pypi/repoze.who.plugins.sa/
http://pypi.python.org/pypi/repoze.who.plugins.sa/
http://pypi.python.org/pypi/repoze.who.plugins.sa/
http://pypi.python.org/pypi/repoze.who.plugins.sa/
http://pypi.python.org/pypi/repoze.who.plugins.formcookie/
http://pypi.python.org/pypi/repoze.who.plugins.formcookie/

CHAPTER 2

Change History

2.1 repoze.who Changelog

2.1.1 2.4.2 (unreleased)

• TBD

2.1.2 2.4.1 (2022-02-01)

• Disallow separators in AuthTicket component values. Closes #37.

• Handle bytes / string correctly in ‘repoze.who.plugins.htpasswd.sha1_check’. Closes #28.

• Switch to use pytest as the testrunner. Closes #34.

2.1.3 2.4 (2020-06-03)

• Add upport for Python 3.6, 3.7, and 3.8.

• Drop support for Python 3.3.

• Fix travis configuration.

• Add samesite option to AuthTktCookiePlugin constructor. If this is passed, it should be a string, and it will
be used to compose the Set-Cookie header’s “SameSite” value, e.g. if you pass samesite="Strict" into
the constructor, the cookie value for the auth tkt cooke will contain SameSite=Strict.

2.1.4 2.3 (2016-05-31)

• Add support for Python 3.4, Python 3.5, and PyPy3.

• Drop support for Python 2.6 and 3.2.

29

repoze.who Documentation, Release 2.2

• middleware: avoid passing extracted identity to remember during egress (the app may have called
api.forget()). See #21.

• _auth_tkt / plugins.auth_tkt: add support for any hash algorithm supported by the hashlibmodule
in Python’s standard library. Fixes #22 via #23.

• plugins.auth_tkt: Fix storage of “userdata” to save dict. Fixes #14 via #18.

• middleware: avoid UnboundLocalError when wrapped generater yields no items. See: http://bugs.repoze.org/
issue184

• Make cookie expiration date RFC-2616 compliant (independent of locale, including ‘GMT’ zone). See #11.

2.1.5 2.2 (2013-05-17)

• Parse INI-file configuration using SafeConfigParser: allows escaping the '%' so that e.g. a query tem-
plate using for a DB-API connection using pyformat preserves the template.

• Added support for Python 3.3, PyPy.

2.1.6 2.1 (2013-03-20)

• _compat module: tolerate missing CONTENT_TYPE key in the WSGI environment. Thanks to Dag Hoidal
for the patch.

• htpasswd plugin: add a sha1_check checker function (the crypt module is not available on Windows).
Thanks to Chandrashekar Jayaraman for the patch.

• Documentation typo fixes from Carlos de la Guardia and Atsushi Odagiri.

2.1.7 2.1b1 (2012-11-05)

• Ported to Py3k using the “compatible subset” mode. - Dropped support for Python < 2.6.x. - Dropped depen-
dency on Paste (forking some code from it). - Added dependency on WebOb instead. Thanks to Atsushi Odagiri
(aodag) for the initial effort.

2.1.8 2.0 (2011-09-28)

• auth_tkt plugin: strip any port number from the ‘Domain’ of generated cookies. http://bugs.repoze.org/
issue66

• Further harden middleware, calling close() on the iterable even if raising an exception for a missing chal-
lenger. http://bugs.repoze.org/issue174

2.1.9 2.0b1 (2011-05-24)

• Enabled standard use of logging module’s configuration mechanism. See http://docs.python.org/dev/howto/
logging.html#configuring-logging-for-a-library Thanks to jgoldsmith for the patch: http://bugs.repoze.org/
issue178

• repoze.who.plugins.htpasswd: defend against timing-based attacks.

30 Chapter 2. Change History

http://bugs.repoze.org/issue184
http://bugs.repoze.org/issue184
http://bugs.repoze.org/issue66
http://bugs.repoze.org/issue66
http://bugs.repoze.org/issue174
http://docs.python.org/dev/howto/logging.html#configuring-logging-for-a-library
http://docs.python.org/dev/howto/logging.html#configuring-logging-for-a-library
http://bugs.repoze.org/issue178
http://bugs.repoze.org/issue178

repoze.who Documentation, Release 2.2

2.1.10 2.0a4 (2011-02-02)

• Ensure that the middleware calls close() (if it exists) on the iterable returned from thw wrapped application,
as required by PEP 333. http://bugs.repoze.org/issue174

• Make make_api_factory_with_config tolerant of invalid filenames / content for the config file: in
such cases, the API factory will have no configured plugins or policies: it will only be useful for retrieving the
API from an environment populated by middleware.

• Fix bug in repoze.who.api where the remember() or forget() methods could return a None if the
identifier plugin returned a None.

• Fix auth_tkt plugin to not hand over tokens as strings to paste. See http://lists.repoze.org/pipermail/
repoze-dev/2010-November/003680.html

• Fix auth_tkt plugin to add “secure” and “HttpOnly” to cookies when configured with secure=True: these
attributes prevent the browser from sending cookies over insecure channels, which could be vulnerable to some
XSS attacks.

• Avoid propagating unicode ‘max_age’ value into cookie headers. See https://bugs.launchpad.net/bugs/674123 .

• Added a single-file example BFG application demonstrating the use of the new ‘login’ and ‘logout’ methods of
the API object.

• Add login and logout methods to the repoze.who.api.API object, as a convenience for application-
driven login / logout code, which would otherwise need to use private methods of the API, and reach down into
its plugins.

2.1.11 2.0a3 (2010-09-30)

• Deprecated the following plugins, moving their modules, tests, and docs to a new project, repoze.who.
deprecatedplugins:

– repoze.who.plugins.cookie.InsecureCookiePlugin

– repoze.who.plugins.form.FormPlugin

– repoze.who.plugins.form.RedirectingFormPlugin

• Made the repoze.who.plugins.cookie.InsecureCookiePlugin take a charset argument, and
use to to encode / decode login and password. See http://bugs.repoze.org/issue155

• Updated repoze.who.restrict to return headers as a list, to keep wsgiref from complaining.

• Helped default request classifier cope with xml submissions with an explicit charset defined: http://bugs.repoze.
org/issue145 (Lorenzo M. Catucci)

• Corrected the handling of type and subtype when matching an XML post to xmlpost in the default classifier,
which, according to RFC 2045, must be matched case-insensitively: http://bugs.repoze.org/issue145 (Lorenzo
M. Catucci)

• Added repoze.who.config:make_api_factory_with_config, a convenience method for appli-
cations which want to set up their own API Factory from a configuration file.

• Fixed example call to repoze.who.config:make_middleware_with_config (added missing
global_config argument). See http://bugs.repoze.org/issue114

2.1. repoze.who Changelog 31

http://bugs.repoze.org/issue174
http://lists.repoze.org/pipermail/repoze-dev/2010-November/003680.html
http://lists.repoze.org/pipermail/repoze-dev/2010-November/003680.html
https://bugs.launchpad.net/bugs/674123
http://bugs.repoze.org/issue155
http://bugs.repoze.org/issue145
http://bugs.repoze.org/issue145
http://bugs.repoze.org/issue145
http://bugs.repoze.org/issue114

repoze.who Documentation, Release 2.2

2.1.12 2.0a2 (2010-03-25)

Bugs Fixed

• Fixed failure to pass substution values in log message string formatting for repoze.who.api:API.
challenge. Fix included adding tests for all logging done by the API object. See http://bugs.repoze.org/
issue122

Backward Incompatibilities

• Adjusted logging level for some lower-level details from info to debug.

2.1.13 2.0a1 (2010-02-24)

Features

• Restored the ability to create the middleware using the old classifier argument. That argument is now a
deprecated-but-will-work-forever alias for request_classifier.

• The auth_tkt plugin now implements the IAuthenticator interface, and should normally be used both
as an IIdentifier and an IAuthenticator.

• Factored out the API of the middleware object to make it useful from within the application. Applications using
repoze.who` now fall into one of three catgeories:

– “middleware-only” applications are configured with middleware, and use either REMOTE_USER or
repoze.who.identity from the environment to determing the authenticated user.

– “bare metal” applications use no repoze.who middleware at all: instead, they configure and an
APIFactory object at startup, and use it to create an API object when needed on a per-request basis.

– “hybrid” applications are configured with repoze.who middleware, but use a new library function to
fetch the API object from the environ, e.g. to permit calling remember after a signup or successful login.

Bugs Fixed

• Fix http://bugs.repoze.org/issue102: when no challengers existed, logging would cause an exception.

• Remove ez_setup.py and dependency on it in setup.py (support distribute).

Backward Incompatibilities

• The middleware used to allow identifier plugins to “pre-authenticate” an identity. This feature is no longer
supported: the auth_tkt plugin, which used to use the feature, is now configured to work as an authenticator
plugin (as well as an identifier).

• The repoze.who.middleware:PluggableAuthenticationMiddleware class no longer has the
following (non-API) methods (now made API methods of the repoze.who.api:API class):

– add_metadata

– authenticate

– challenge

– identify

32 Chapter 2. Change History

http://bugs.repoze.org/issue122
http://bugs.repoze.org/issue122
http://bugs.repoze.org/issue102

repoze.who Documentation, Release 2.2

• The following (non-API) functions moved from repoze.who.middleware to repoze.who.api:

– make_registries

– match_classification

– verify

2.1.14 1.0.18 (2009-11-05)

• Issue #104: AuthTkt plugin was passing an invalid cookie value in headers from forget, and was not setting
the Max-Age and Expires attributes of those cookies.

2.1.15 1.0.17 (2009-11-05)

• Fixed the repoze.who.plugins.form.make_plugin factory’s formcallable argument handling,
to allow passing in a dotted name (e.g., from a config file).

2.1.16 1.0.16 (2009-11-04)

• Exposed formcallable argument for repoze.who.plugins.form.FormPlugin to the callers of the
repoze.who.plugins.form.make_plugin factory. Thanks to Roland Hedburg for the report.

• Fixed an issue that caused the following symptom when using the ini configuration parser:

TypeError: _makePlugin() got multiple values for keyword argument 'name'

See http://bugs.repoze.org/issue92 for more details. Thanks to vaab for the bug report and initial fix.

2.1.17 1.0.15 (2009-06-25)

• If the form post value max_age exists while in the identify method is handling the
login_handler_path, pass the max_age value in the returned identity dictionary as max_age.
See the below bullet point for why.

• If the identity dict passed to the auth_tkt remember method contains a max_age key with a string (or
integer) value, treat it as a cue to set the Max-Age and Expires headers in the returned cookies. The cookie
Max-Age is set to the value and the Expires is computed from the current time.

2.1.18 1.0.14 (2009-06-17)

• Fix test breakage on Windows. See http://bugs.repoze.org/issue79 .

• Documented issue with using include_ip setting in the auth_tkt plugin. See http://bugs.repoze.org/
issue81 .

• Added ‘passthrough_challenge_decider’, which avoids re-challenging 401 responses which have been “pre-
challenged” by the application.

• One-hundred percent unit test coverage.

• Add timeout and reissue_time arguments to the auth_tkt identifier plugin, courtesty of Paul Johnston.

2.1. repoze.who Changelog 33

http://bugs.repoze.org/issue92
http://bugs.repoze.org/issue79
http://bugs.repoze.org/issue81
http://bugs.repoze.org/issue81

repoze.who Documentation, Release 2.2

• Add a userid_checker argument to the auth_tkt identifier plugin, courtesty of Gustavo Narea.

If userid_checker is provided, it must be a dotted Python name that resolves to a function which ac-
cepts a userid and returns a boolean True or False, indicating whether that user exists in a database. This is
a workaround. Due to a design bug in repoze.who, the only way who can check for user existence is to use
one or more IAuthenticator plugin authenticate methods. If an IAuthenticator’s authenticate method
returns true, it means that the user exists. However most IAuthenticator plugins expect both a username and a
password, and will return False unconditionally if both aren’t supplied. This means that an authenticator can’t
be used to check if the user “only” exists. The identity provided by an auth_tkt does not contain a password to
check against. The actual design bug in repoze.who is this: when a user presents credentials from an auth_tkt, he
is considered “preauthenticated”. IAuthenticator.authenticate is just never called for a “preauthenticated” iden-
tity, which works fine, but it means that the user will be considered authenticated even if you deleted the user’s
record from whatever database you happen to be using. However, if you use a userid_checker, you can ensure
that a user exists for the auth_tkt supplied userid. If the userid_checker returns False, the auth_tkt credentials
are considered “no good”.

2.1.19 1.0.13 (2009-04-24)

• Added a paragraph to IAuthenticator docstring, documenting that plugins are allowed to add keys to the
identity dictionary (e.g., to save a second database query in an IMetadataProvider plugin).

• Patch supplied for issue #71 (http://bugs.repoze.org/issue71) whereby a downstream app can return a generator,
relying on an upstream component to call start_response. We do this because the challenge decider needs the
status and headers to decide what to do.

2.1.20 1.0.12 (2009-04-19)

• auth_tkt plugin tried to append REMOTE_USER_TOKENS data to existing tokens data returned by
auth_tkt.parse_tkt; this was incorrect; just overwrite.

• Extended auth_tkt plugin factory to allow passing secret in a separate file from the main config file. See http:
//bugs.repoze.org/issue40 .

2.1.21 1.0.11 (2009-04-10)

• Fix auth_tkt plugin; cookie values are now quoted, making it possible to put spaces and other whitespace, etc in
usernames. (thanks to Michael Pedersen).

• Fix corner case issue of an exception raised when attempting to log when there are no identifiers or authentica-
tors.

2.1.22 1.0.10 (2009-01-23)

• The RedirectingFormPlugin now passes along SetCookie headers set into the response by the application within
the NotFound response (fixes TG2 “flash” issue).

2.1.23 1.0.9 (2008-12-18)

• The RedirectingFormPlugin now attempts to find a header named X-Authentication-Failure-Reason
among the response headers set by the application when a challenge is issued. If a value for this header exists
(and is non-blank), the value is attached to the redirect URL’s query string as the reason parameter (or a
user-settable key). This makes it possible for downstream applications to issue a response that initiates a

34 Chapter 2. Change History

http://bugs.repoze.org/issue71
http://bugs.repoze.org/issue40
http://bugs.repoze.org/issue40

repoze.who Documentation, Release 2.2

challenge with this header and subsequently display the reason in the login form rendered as a result of the
challenge.

2.1.24 1.0.8 (2008-12-13)

• The PluggableAuthenticationMiddleware constructor accepts a log_stream argument, which is
typically a file. After this release, it can also be a PEP 333 Logger instance; if it is a PEP 333 Logger instance,
this logger will be used as the repoze.who logger (instead of one being constructed by the middleware, as was
previously always the case). When the log_stream argument is a PEP 333 Logger object, the log_level
argument is ignored.

2.1.25 1.0.7 (2008-08-28)

• repoze.who and repoze.who.pluginswere not added to the namespace_packages list in setup.py,
potentially making 1.0.6 a brownbag release, given that making these packages namespace packages was the
only reason for its release.

2.1.26 1.0.6 (2008-08-28)

• Make repoze.who and repoze.who.plugins into namespace packages mainly so we can allow plugin authors to
distribute packages in the repoze.who.plugins namespace.

2.1.27 1.0.5 (2008-08-23)

• Fix auth_tkt plugin to set the same cookies in its remember method that it does in its forget method.
Previously, logging out and relogging back in to a site that used auth_tkt identifier plugin was slightly dicey and
would only work sometimes.

• The FormPlugin plugin has grown a redirect-on-unauthorized feature. Any response from a downstream appli-
cation that causes a challenge and includes a Location header will cause a redirect to the value of the Location
header.

2.1.28 1.0.4 (2008-08-22)

• Added a key to the ‘[general]’ config section: remote_user_key. If you use this key in the config file, it tells
who to 1) not perform any authentication if it exists in the environment during ingress and 2) to set the key in the
environment for the downstream app to use as the REMOTE_USER variable. The default is REMOTE_USER.

• Using unicode user ids in combination with the auth_tkt plugin would cause problems under mod_wsgi.

• Allowed ‘cookie_path’ argument to InsecureCookiePlugin (and config constructor). Thanks to Gustavo Narea.

2.1.29 1.0.3 (2008-08-16)

• A bug in the middleware’s authenticate method made it impossible to authenticate a user with a userid that
was null (e.g. 0, False), which are valid identifiers. The only invalid userid is now None.

• Applied patch from Olaf Conradi which logs an error when an invalid filename is passed to the HTPasswdPlugin.

2.1. repoze.who Changelog 35

repoze.who Documentation, Release 2.2

2.1.30 1.0.2 (2008-06-16)

• Fix bug found by Chris Perkins: the auth_tkt plugin’s “remember” method didn’t handle userids which are
Python “long” instances properly. Symptom: TypeError: cannot concatenate ‘str’ and ‘long’ objects in
“paste.auth.auth_tkt”.

• Added predicate-based “restriction” middleware support (repoze.who.restrict), allowing configuratio-driven au-
thorization as a WSGI filter. One example predicate, ‘authenticated_predicate’, is supplied, which requires that
the user be authenticated either via ‘REMOTE_USER’ or via ‘repoze.who.identity’. To use the filter to restrict
access:

[filter:authenticated_only]
use = egg:repoze.who#authenticated

or::

[filter:some_predicate]
use = egg:repoze.who#predicate
predicate = my.module:some_predicate
some_option = a value

2.1.31 1.0.1 (2008-05-24)

• Remove dependency-link to dist.repoze.org to prevent easy_install from inserting that path into its search paths
(the dependencies are available from PyPI).

2.1.32 1.0 (2008-05-04)

• The plugin at plugins.form.FormPlugin didn’t redirect properly after collecting identification information.
Symptom: a downstream app would receive a POST request with a blank body, which would sometimes re-
sult in a Bad Request error.

• Fixed interface declarations of ‘classifiers.default_request_classifier’ and ‘classi-
fiers.default_password_compare’.

• Added actual config-driven middleware factory, ‘config.make_middleware_with_config’

• Removed fossilized ‘who_conf’ argument from plugin factory functions.

• Added ConfigParser-based WhoConfig, implementing the spec outlined at http://www.plope.com/static/misc/
sphinxtest/intro.html#middleware-configuration-via-config-file, with the following changes:

– “Bare” plugins (requiring no configuration options) may be specified as either egg entry points (e.g.,
‘egg:distname#entry_point_name’) or as dotted-path-with-colon (e.g., ‘dotted.name:object_id’).

– Therefore, the separator between a plugin and its classifier is now a semicolon, rather than a colon. E.g.:

[plugins:id_plugin]
use = egg:another.package#identify_with_frobnatz
frobnatz = baz

[identifiers]
plugins =
egg:my.egg#identify;browser
dotted.name:identifier
id_plugin

36 Chapter 2. Change History

http://www.plope.com/static/misc/sphinxtest/intro.html#middleware-configuration-via-config-file
http://www.plope.com/static/misc/sphinxtest/intro.html#middleware-configuration-via-config-file

repoze.who Documentation, Release 2.2

2.1.33 0.9.1 (2008-04-27)

• Fix auth_tkt plugin to be able to encode and decode integer user ids.

2.1.34 0.9 (2008-04-01)

• Fix bug introduced in FormPlugin in 0.8 release (rememberer headers not set).

• Add PATH_INFO to started and ended log info.

• Add a SQLMetadataProviderPlugin (in plugins/sql).

• Change constructor of SQLAuthenticatorPlugin: it now accepts only “query”, “conn_factory”, and “com-
pare_fn”. The old constructor accepted a DSN, but some database systems don’t use DBAPI DSNs. The new
constructor accepts no DSN; the conn_factory is assumed to do all the work to make a connection, including
knowing the DSN if one is required. The “conn_factory” should return something that, when called with no
arguments, returns a database connection.

• The “make_plugin” helper in plugins/sql has been renamed “make_authenticator_plugin”. When called, this
helper will return a SQLAuthenticatorPlugin. A bit of helper logic in the “make_authenticator_plugin” allows
a connection factory to be computed. The top-level callable referred to by conn_factory in this helper should
return a function that, when called with no arguments, returns a datbase connection. The top-level callable itself
is called with “who_conf” (global who configuration) and any number of non-top-level keyword arguments as
they are passed into the helper, to allow for a DSN or URL or whatever to be passed in.

• A “make_metatata_plugin” helper has been added to plugins/sql. When called, this will make a SQLMetadat-
aProviderPlugin. See the implementation for details. It is similar to the “make_authenticator_plugin” helper.

2.1.35 0.8 (2008-03-27)

• Add a RedirectingFormIdentifier plugin. This plugin is willing to redirect to an external (or downstream ap-
plication) login form to perform identification. The external login form must post to the “login_handler_path”
of the plugin (optimally with a “came_from” value to tell the plugin where to redirect the response to if the
authentication works properly). The “logout_handler_path” of this plugin can be visited to perform a logout.
The “came_from” value also works there.

• Identifier plugins are now permitted to set a key in the environment named ‘repoze.who.application’ on ingress
(in ‘identify’). If an identifier plugin does so, this application is used instead of the “normal” downstream
application. This feature was added to more simply support the redirecting form identifier plugin.

2.1.36 0.7 (2008-03-26)

• Change the IMetadataProvider interface: this interface used to have a “metadata” method which returned a
dictionary. This method is not part of that API anymore. It’s been replaced with an “add_metadata” method
which has the signature:

def add_metadata(environ, identity):
"""
Add metadata to the identity (which is a dictionary)
"""

The return value is ignored. IMetadataProvider plugins are now
assumed to be responsible for 'scribbling' directly on the identity
that is passed in (it's a dictionary). The user id can always be

(continues on next page)

2.1. repoze.who Changelog 37

repoze.who Documentation, Release 2.2

(continued from previous page)

retrieved from the identity via identity['repoze.who.userid'] for
metadata plugins that rely on that value.

2.1.37 0.6 (2008-03-20)

• Renaming: repoze.pam is now repoze.who

• Bump ez_setup.py version.

• Add IMetadataProvider plugin type. Chris says ‘Whit rules’.

2.1.38 0.5 (2008-03-09)

• Allow “remote user key” (default: REMOTE_USER) to be overridden (pass in remote_user_key to middleware
constructor).

• Allow form plugin to override the default form.

• API change: IIdentifiers are no longer required to put both ‘login’ and ‘password’ in a returned identity dic-
tionary. Instead, an IIdentifier can place arbitrary key/value pairs in the identity dictionary (or return an empty
dictionary).

• API return value change: the “failure” identity which IIdentifiers return is now None rather than an empty
dictionary.

• The IAuthenticator interface now specifies that IAuthenticators must not raise an exception when evaluating
an identity that does not have “expected” key/value pairs (e.g. when an IAuthenticator that expects login and
password inspects an identity returned by an IP-based auth system which only puts the IP address in the identity);
instead they fail gracefully by returning None.

• Add (cookie) “auth_tkt” identification plugin.

• Stamp identity dictionaries with a userid by placing a key named ‘repoze.pam.userid’ into the identity for each
authenticated identity.

• If an IIdentifier plugin inserts a ‘repoze.pam.userid’ key into the identity dictionary, consider this identity “preau-
thenticated”. No authenticator plugins will be asked to authenticate this identity. This is designed for things like
the recently added auth_tkt plugin, which embeds the user id into the ticket. This effectively alllows an IIdenti-
fier plugin to become an IAuthenticator plugin when breaking apart the responsibility into two separate plugins
is “make-work”. Preauthenticated identities will be selected first when deciding which identity to use for any
given request.

• Insert a ‘repoze.pam.identity’ key into the WSGI environment on ingress if an identity is found. Its value will
be the identity dictionary related to the identity selected by repoze.pam on ingress. Downstream consumers are
allowed to mutate this dictionary; this value is passed to “remember” and “forget”, so its main use is to do a
“credentials reset”; e.g. a user has changed his username or password within the application, but we don’t want
to force him to log in again after he does so.

2.1.39 0.4 (03-07-2008)

• Allow plugins to specify a classifiers list per interface (instead of a single classifiers list per plugin).

38 Chapter 2. Change History

repoze.who Documentation, Release 2.2

2.1.40 0.3 (03-05-2008)

• Make SQLAuthenticatorPlugin’s default_password_compare use hexdigest sha instead of base64’ed binary sha
for simpler conversion.

2.1.41 0.2 (03-04-2008)

• Added SQLAuthenticatorPlugin (see plugins/sql.py).

2.1.42 0.1 (02-27-2008)

• Initial release (no configuration file support yet).

2.1. repoze.who Changelog 39

repoze.who Documentation, Release 2.2

40 Chapter 2. Change History

CHAPTER 3

Support and Development

To report bugs, use the Repoze bug tracker.

If you’ve got questions that aren’t answered by this documentation, contact the Repoze-dev maillist or join the #repoze
IRC channel.

Browse and check out tagged and trunk versions of repoze.who via the Repoze github repository. To check out the
trunk via git, use this command:

git clone https://github.com:repoze/repoze.who.git

Or, if you are logged in:

git clone git@github.com:repoze/repoze.who.git

To find out how to become a contributor to repoze.who, please see the contributor’s page.

41

http://bugs.repoze.org
http://lists.repoze.org/listinfo/repoze-dev
irc://irc.freenode.net/#repoze
irc://irc.freenode.net/#repoze
https://github.com/repoze/repoze.who/
mailto:git@github.com
http://repoze.org/contributing.html

repoze.who Documentation, Release 2.2

42 Chapter 3. Support and Development

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

43

repoze.who Documentation, Release 2.2

44 Chapter 4. Indices and tables

Python Module Index

r
repoze.who, 1
repoze.who.interfaces, 12
repoze.who.middleware, 16
repoze.who.plugins.auth_tkt, 21
repoze.who.plugins.basicauth, 21
repoze.who.plugins.htpasswd, 21
repoze.who.plugins.redirector, 21
repoze.who.plugins.sql, 22

45

repoze.who Documentation, Release 2.2

46 Python Module Index

Index

Symbols
__call__() (repoze.who.interfaces.IAPIFactory

method), 12
__call__() (repoze.who.interfaces.IChallengeDecider

method), 13
__call__() (repoze.who.interfaces.IRequestClassifier

method), 13

A
add_metadata() (re-

poze.who.interfaces.IMetadataProvider
method), 15

authenticate() (repoze.who.interfaces.IAPI
method), 12

authenticate() (re-
poze.who.interfaces.IAuthenticator method),
14

AuthTktCookiePlugin (class in re-
poze.who.plugins.auth_tkt), 21

B
BasicAuthPlugin (class in re-

poze.who.plugins.basicauth), 21

C
challenge() (repoze.who.interfaces.IAPI method), 12
challenge() (repoze.who.interfaces.IChallenger

method), 14

F
forget() (repoze.who.interfaces.IAPI method), 12
forget() (repoze.who.interfaces.IIdentifier method),

14

H
HTPasswdPlugin (class in re-

poze.who.plugins.htpasswd), 21

I
IAPI (interface in repoze.who.interfaces), 12

IAPIFactory (interface in repoze.who.interfaces), 12
IAuthenticator (interface in repoze.who.interfaces),

14
IChallengeDecider (interface in re-

poze.who.interfaces), 13
IChallenger (interface in repoze.who.interfaces), 14
identify() (repoze.who.interfaces.IIdentifier

method), 13
IIdentifier (interface in repoze.who.interfaces), 13
IMetadataProvider (interface in re-

poze.who.interfaces), 15
IPlugin (interface in repoze.who.interfaces), 13
IRequestClassifier (interface in re-

poze.who.interfaces), 13

L
login() (repoze.who.interfaces.IAPI method), 12
logout() (repoze.who.interfaces.IAPI method), 12

P
PluggableAuthenticationMiddleware (class

in repoze.who.middleware), 16

R
RedirectorPlugin (class in re-

poze.who.plugins.redirector), 21
remember() (repoze.who.interfaces.IAPI method), 12
remember() (repoze.who.interfaces.IIdentifier

method), 14
repoze.who (module), 1
repoze.who.interfaces (module), 12
repoze.who.middleware (module), 16
repoze.who.plugins.auth_tkt (module), 21
repoze.who.plugins.basicauth (module), 21
repoze.who.plugins.htpasswd (module), 21
repoze.who.plugins.redirector (module), 21
repoze.who.plugins.sql (module), 22
RFC

RFC 2617, 21

47

repoze.who Documentation, Release 2.2

S
SQLAuthenticatorPlugin (class in re-

poze.who.plugins.sql), 22
SQLMetadataProviderPlugin (class in re-

poze.who.plugins.sql), 22

48 Index

	Sections
	repoze.who Narrative Documentation
	repoze.who Use Cases
	Using repoze.who Middleware
	Using the repoze.who Application Programming Interface (API)
	Configuring repoze.who
	About repoze.who Plugins
	Known Plugins for repoze.who

	Change History
	repoze.who Changelog

	Support and Development
	Indices and tables
	Python Module Index
	Index

